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1. Introduction

The pure spinor formalism can be used to covariantly describe the superstring in any

consistent d = 10 supergravity background [1]. When the supergravity background is

AdS5 ×S5, the resulting worldsheet action has manifest PSU(2, 2|4) symmetry and is con-

structed from the Metsaev-Tseytlin left-invariant currents g−1dg where g takes values in

the coset PSU(2,2|4)
SO(4,1)×SO(5) [2]. In the large radius limit where rAdS → ∞, this action can be

covariantly quantized [3, 4] and one can compute PSU(2, 2|4)-covariant correlation func-

tions as an expansion in 1
rAdS

[5]. However, to compare with computations in perturbative

super-Yang-Mills, one needs to be able to quantize the worldsheet action in the small radius

limit where rAdS → 0.

Recently, a proposal was made for how to quantize in the small radius limit [6, 7]. After

combining the 22 pure spinor ghosts λα and λ̂bα with the ten AdS5×S
5 spacetime variables

into a 32-component unconstrained bosonic spinor, the AdS5 × S5 worldsheet action was

expressed as an N = (2, 2) worldsheet supersymmetric action based on the fermionic coset
PSU(2,2|4)

SU(2,2)×SU(4) . This coset contains 32 fermionic variables, and the 32-component uncon-

strained bosonic spinor is the worldsheet superpartner of these variables.

If the BRST charge is defined to be the scalar worldsheet supersymmetry generator,

this worldsheet supersymmetric action is a topological A-model which can be quantized

using standard topological methods. However, in the large radius limit, it is important to

note that the BRST charge defined in the pure spinor formalism is not the scalar worldsheet

supersymmetry generator. So in the large radius limit, the AdS5 ×S5 worldsheet action is
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not a topological A-model, which is expected since one has a continuum of physical states

in this supergravity limit.

Nevertheless, it was conjectured that in the small radius limit, the BRST charge can

be defined to be the scalar worldsheet supersymmetry generator such that the worldsheet

action for the AdS5 × S5 superstring becomes a topological A-model when rAdS → 0.

Preliminary evidence for this conjecture came from an analogy with the Gopakumar-Vafa

duality relating d = 3 Chern-Simons theory and the resolved conifold [8]. This open-closed

duality was proven in [9] using a topological A-model and has many similarities with

super-Yang-Mills/AdS5 ×S5 duality. More recently, additional evidence for the conjecture

was provided by Bonelli and Safaai [10] who argued that topological amplitudes involving

certain D-branes in the model compute correlation functions of circular super-Yang-Mills

Wilson lines. These D-branes break PSU(2, 2|4) to OSp(2, 2|4) which are the symmetries

preserved by the circular Wilson lines.

If the conjecture is correct that this topological A-model describes the small radius limit

of AdS5 × S5, it should be possible to compute correlation functions of arbitrary gauge-

invariant super-Yang-Mills operators using topological string methods. In this paper, it will

be argued that topological amplitudes in this model indeed can compute arbitrary gauge-

invariant super-Yang-Mills correlation functions. The topological amplitudes reproduce the

usual perturbative Feynman diagram method for computing these correlation functions by

replacing the propagators and vertices of Feynman diagrams with a network of Wilson lines

of a worldsheet gauge field which connect holes on the closed string worldsheet.

The first step in computing these topological amplitudes is to note that the BRST-

invariant topological A-model of [6, 7] can be expressed as the gauge-fixed version of a G/G

principal chiral model where G = PSU(2, 2|4).1 This principal chiral model is defined by

the worldsheet action

S = Tr

∫
d2z

[
r2AdS(g−1∇g)(g−1∇g) +

1

e2
F 2

]
(1.1)

where g takes values in PSU(2, 2|4), the covariant derivative on g is gauged using a

PSU(2, 2|4) worldsheet gauge field (A,A) whose field-strength is F , and the infrared limit

e→ ∞ is taken at the end of the computation.

If rAdS is large, one can freely set 1
e2 = 0 and the model becomes trivial by gauging

away g such that the action reduces to S = Tr
∫
d2z r2AdSAA. However, when rAdS is

small, there can be non-trivial fluctuations of the gauge field that survive in the limit

where e → ∞. These fluctuations are of size (e rAdS)
−1 and can be described by closed

string vertex operators on the worldsheet which are connected to each other by a network

of Wilson lines.

For the configuration corresponding to M gauge-invariant super-Yang-Mills operators,

one will have M vertex operators on the closed string worldsheet. And if the rth gauge-

invariant operator is Tr(Φ1 . . .Φnr) where Φ1 . . .Φnr are linearized super-Yang-Mills fields,

there will be nr Wilson lines emerging from the rth hole which join with the Wilson lines

1Based on analysis using the RNS formalism, a similar topological description of the zero radius limit

of the AdS5 × S
5 superstring was discussed by Polyakov at Strings 2002 [11].
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emerging from the other holes. This network of Wilson lines will represent a Feynman

diagram of perturbative super-Yang-Mills, and it will be required that Wilson lines do not

cross on the worldsheet so that the Feynman diagram can be thickened as in the ‘t Hooft

large N expansion. Furthermore, it will be claimed that the contribution of each network

to the topological amplitude coincides with the corresponding Feynman rules including

the factor of (λ2
YM)2g−2(λ′tHooft)

faces = (λstring)
2g−2(r4AdS)

faces which is predicted by the

Maldacena conjecture [12].

Note that in the topological amplitude computation, there is no integration over the

locations of the closed string vertex operators. Unlike the proposal of [13] where the

Schwinger parameters come from integration over worldsheet moduli, integrals over loop

momenta in this description come from summing over the components in the singleton rep-

resentation of PSU(2, 2|4) which describe the propagating states in the Feynman diagram.

This is similar to computations in twistor-string theory [14] [15] where tree-level super-

Yang-Mills amplitudes are reproduced without any integration over worldsheet moduli.

An interesting question is how these topological amplitude computations are related

to the usual prescription for closed superstring scattering amplitudes in the pure spinor

formalism. Since three-point amplitudes of half-BPS states should be independent of rAdS,

the computation of these three-point amplitudes should be similar in the topological string

prescription and in the pure spinor formalism.

In a flat background using the pure spinor formalism, integration over the left and right-

moving worldsheet zero modes implies that non-vanishing correlation functions require 3

λ’s and 3 λ̂’s as well as 5 θ’s and 5 θ̂’s in the combination [1]

(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)(λ̂γ
q θ̂)(λ̂γrθ̂)(λ̂γsθ̂)(θ̂γqrsθ̂). (1.2)

In an AdS5 × S5 background using the pure spinor formalism, it will be argued that

the analogous zero mode measure factor is simply

(η
αbβλ

αλ̂
bβ)3 (1.3)

where η
αbβ ≡ γ01234

αbβ . Moreover, for half-BPS states, the unintegrated closed string vertex

operator is

V = (η
αbβλ

αλ̂
bβ)f(x, θ, θ̂) + . . . (1.4)

where . . . is determined by BRST invariance. Since the three-point tree amplitude prescrip-

tion using the pure spinor formalism is A = 〈V1V2V3〉, one finds that after integrating over

the pure spinor ghosts using the measure factor of (1.3), the pure spinor ghosts trivially de-

couple and the pure spinor computation reduces to the topological amplitude computation.

In section 2 of this paper, the topological A-model of [6, 7] is reviewed and is shown

to be the gauge-fixed version of a G/G principal chiral model. In section 3, topological

amplitudes in this model are shown to compute super-Yang-Mills Feynman diagrams in the

‘t Hooft large-N expansion. And in section 4, these topological amplitude computations are

compared with closed superstring amplitude computations using the pure spinor formalism

in an AdS5 × S5 background.
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2. Topological AdS5 × S5 sigma model

2.1 Review of
PSU(2,2|4)

SU(2,2)×SU(4) coset model

In [6] and [7], the pure spinor version of the superstring action in an AdS5×S
5 background

was mapped to an N = (2, 2) worldsheet supersymmetric sigma model based on the coset
PSU(2,2|4)

SU(2,2)×SU(4) = U(2,2|4)
U(2,2)×U(4) . Note that before introducing worldsheet gauge fields, the non-

linear sigma model based on the coset PSU(2,2|4)
SU(2,2)×SU(4) is equivalent to the non-linear sigma

model based on the coset U(2,2|4)
U(2,2)×U(4) . It was more convenient in [7] to use the coset

U(2,2|4)
U(2,2)×U(4) since the U(1) gauge field of U(4) was necessary for expressing the action as a

gauged linear sigma model. In this paper, the gauged linear sigma model will not play any

role and it will be necessary to use the coset PSU(2,2|4)
SU(2,2)×SU(4) so that the worldsheet gauge

symmetries do not include the “bonus” U(1) symmetry.

This non-linear sigma model was constructed from a fermionic coset G taking values

in PSU(2,2|4)
SU(2,2)×SU(4) together with the bosonic ghosts [ZA

J , Y
J
A , Z

J
A, Y

A
J ] where A = 1 to 4 is

an SU(2, 2) index and J = 1 to 4 is an SU(4) index. The coset G can be parameterized

as G(θ, θ̂) = eθ
αQα+bθbαQbα where θα and θ̂bα are 32 fermionic worldsheet scalars and, after

performing an A-twist, (ZA
J , Z

J
A) are worldsheet scalars and Y J

A and Y
A
J carry conformal

weight (1, 0) and (0, 1).

The map between these variables and the worldsheet variables of the pure spinor

formalism can be found in [6, 7] and will not be necessary here. Up to a BRST-trivial

term, this map takes the pure spinor version of the AdS5 × S5 sigma model into the

worldsheet action

S = r2AdS

∫
d2z[(G−1∂G)JA(G−1∂G)AJ

−Y J
A [∂ZA

J + (G−1∂G)ABZ
B
J − (G−1∂G)KJ Z

A
K ]

+Y
A
J [∂Z

J
A − (G−1∂G)BAZ

J
B + (G−1∂G)JKZ

K
A ]

+Y J
AZ

A
KZ

K
BY

B
J − ZA

J Y
J
BY

B
KZ

K
A ]. (2.1)

Although one can combine (θα, θ̂bα, ZA
J , Z

J
A, Y

J
A , Y

J
A) into N = (2, 2) worldsheet superfields

and write (2.1) in worldsheet superspace, it will be more convenient here to leave the

worldsheet action in components.

It will be useful to note that by introducing the SU(2, 2) × SU(4) worldsheet gauge

fields (AA
B , A

A
B) and (AJ

K , A
J
K), (2.1) can be written as

S = r2AdS

∫
d2z[(G−1∂G)JA(G−1∂G)AJ + (G−1∂G−A)AB(G−1∂G−A)BA

−(G−1∂G−A)JK(G−1∂G−A)KJ − Y J
A (∇Z)AJ + Y

A
J (∇Z)JA] (2.2)

where (∇Z)AJ = ∂ZA
J + A

A
BZ

B
J − A

K
J Z

A
K and (∇Z)JA = ∂Z

J
A − AB

AZ
J
B + AJ

KZ
K
A . Although

not manifest when written in components, (2.2) has N = (2, 2) worldsheet supersymmetry

and the N = (2, 2) worldsheet superconformal generators are

ZA
J (G−1∂G)JA, Y J

A (G−1∂G)AJ , Y
A
J (G−1∂G)JA, Z

J
A(G−1∂G)AJ . (2.3)
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So after performing an A-twist, the BRST operator in this topological A-model is

identified with

Q =

∫
dzZA

J (G−1∂G)JA +

∫
dzZ

J
A(G−1∂G)AJ . (2.4)

As explained in [7], the BRST operator of (2.4) for the topological A-model is not

mapped into the BRST operator of the pure spinor formalism whose cohomology defines

the physical spectrum at large rAdS. Nevertheless, it was conjectured that at small rAdS, the

BRST operator of (2.4) can be used to define the physical states. This conjecture recently

gained support from a paper showing that half-BPS super-Yang-Mills Wilson loops are

described by D-branes in this topological A-model [10].

2.2 Principal chiral model

In this subsection, it will be shown that the action of (2.2) together with the BRST operator

of (2.4) can be understood as a gauge-fixed version of the G/G principal chiral model where

G = PSU(2, 2|4). So the pure spinor version of the AdS5 ×S
5 sigma model can be mapped

into a G/G principal chiral model. It will be also be shown that other gauge fixings of

the G/G principal chiral model give rise to models based on the coset PSU(2,2|4)
SU(2|2)×SU(2|2) or

PSU(2,2|4)
SU(1,1|2)×SU(1,1|2) . Like the PSU(2,2|4)

SU(2,2)×SU(4) coset, these cosets are symmetric spaces and their

actions are conformally invariant at the quantum level. However, unlike the PSU(2,2|4)
SU(2,2)×SU(4)

coset which contains 32 fermions and no bosons, these cosets contain 16 bosons and 16

fermions.

The worldsheet action for the G/G principal chiral model is defined as

S = r2AdS

∫
d2z(g−1∂g −A)RS (g−1∂g −A)SR (2.5)

where g takes values in PSU(2, 2|4), R = (A, J) is a PSU(2, 2|4) index, and (AS
R, A

S
R) are

worldsheet gauge fields taking values in the PSU(2, 2|4) Lie algebra. Naively, this action is

trivial since one can shift (AR
S , A

R
S ) to eliminate g. However, as will be seen in the following

section, non-trivial solutions can be obtained by introducing a kinetic term 1
e2

∫
d2zFR

S F
S
R

for the worldsheet gauge field and taking the infrared limit e → ∞ at the end of the

computation.

The worldsheet action of (2.5) has a local PSU(2, 2|4) gauge invariance under which

δg = gΩ and δA = dΩ + [A,Ω]. To relate (2.5) to the action of (2.2), one should gauge-fix

the SU(2, 2) × SU(4) subgroup of this invariance by choosing the gauge g = G(θ, θ̂) =

eθ
aQα+bθbαQbα . Furthermore, one should gauge-fix the remaning 32 fermionic invariances by

choosing the gauge

AJ
A = 0, A

A
J = 0 (2.6)

for the fermionic worldsheet gauge fields.

The gauge choice g = G(θ, θ̂) does not require Faddeev-Popov ghosts, however, the

gauge choice of (2.6) requires the Faddeev-Popov ghosts (ZA
J , Z

J
A) and antighosts (Y J

A , Y
A
J )

with the worldsheet action

Sghost =

∫
d2z[−Y J

A (∇Z)AJ + Y
A
J (∇Z)JA] (2.7)

– 5 –
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where (∇Z)AJ and (∇Z)JA are defined below (2.2). So after gauge-fixing, the worldsheet

action is

S = r2AdS

∫
d2z[(G−1∂G)JA(G−1∂G)AJ + (G−1∂G−A)AJ (G−1∂G−A)JA (2.8)

+(G−1∂G−A)AB(G−1∂G−A)BA − (G−1∂G−A)JK(G−1∂G−A)KJ

−Y J
A (∇Z)AJ + Y

A
J (∇Z)JA].

Assuming that the kinetic term 1
e2

∫
d2zFA

J F
J
A for the fermionic gauge fields AA

J and A
J
A

can be ignored in the limit e → ∞, one can integrate out these fermionic gauge fields to

obtain the action of (2.2). Furthermore, the standard BRST quantization method implies

that the BRST operator arising from the gauge-fixing of (2.6) is precisely (2.4).

So the PSU(2,2|4)
SU(2,2)×SU(4) worldsheet action and BRST operator can be understood as coming

from the G/G principal chiral model in the gauge AJ
A = A

A
J = 0. If one had instead chosen

the gauge

Aa
j′ = Aj

ȧ = Aa
ȧ = Aj

j′ = 0, A
j′

a = A
ȧ
j = A

ȧ
a = A

j′

j = 0, (2.9)

where the SU(2, 2) and SU(4) indices have been split into SU(2)×SU(2) and SU(2)×SU(2)

indices as A = (a, ȧ) and J = (j, j′) for a, ȧ, j, j′ = 1 to 2, the resulting action and BRST

operator would be constructed in a similar manner to (2.2) using the coset PSU(2,2|4)
PS[U(2|2)×U(2|2)] .

Similarly, if one had split the SU(2, 2) and SU(4) indices into SU(1, 1) × SU(1, 1) and

SU(2) × SU(2) indices, the resulting action and BRST operator would be constructed

using the coset PSU(2,2|4)
PS[U(1,1|2)×U(1,1|2)] .

So by starting with the G/G principal chiral model and choosing different gauge-fixings,

one can relate topological A-models based on different symmetric coset spaces. Since

the denominator of the coset determines the manifest symmetries, the worldsheet actions

based on the PSU(2,2|4)
PS[U(2|2)×U(2|2)] and PSU(2,2|4)

PS[U(1,1|2)×U(1,1|2)] cosets may be useful for describing

BPS states which preserve different symmetries than the half-BPS Wilson loops described

in [10].

3. Feynman diagrams from topological model

3.1 Physical observables

As explained in the previous section, the topological A-model of [6, 7] can be understood

as a gauge-fixed version of the G/G principal chiral model whose worldsheet action is

S = Tr

∫
d2z[r2AdS(g−1∂g −A)(g−1∂g −A) +

1

e2
F 2] (3.1)

where g takes values in PSU(2, 2|4), (A,A) is a PSU(2, 2|4) worldsheet gauge field with

field strength F , and one takes the infrared limit e → ∞ at the end of the computation.

Naively, this model has no physical states since one can use the local PSU(2, 2|4) symmetry

to gauge g = 1 and, in the limit e→ ∞, the gauge field does not propagate.

Since the mass of the gauge field is e rAdS, the fluctuations of the gauge field have size

of order (e rAdS)
−1. If rAdS is not small, the size of the fluctuations goes quickly to zero in

– 6 –
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the infrared limit e → ∞. However, if rAdS is infinitesimal, these fluctuations may not be

small and one can consider “holes” of size (e rAdS)−1 in the worldsheet where the gauge

field is nonzero.

Physical observables will be related to these fluctuations of the gauge field, and the

locations of the “holes” will correspond to the locations of closed string vertex operators

which carry global PSU(2, 2|4) indices. Since physical observables must be gauge invariant

with respect to the local PSU(2, 2|4) symmetry, one needs to construct gauge-invariant

operators out of g and A which describe these physical observables.

Under local PSU(2, 2|4) transformations parameterized by ΩI′

J ′ , the coset gI′

I and the

gauge field AI′

J ′ transform as

δgI′

I = gJ ′

I ΩI′

J ′ , δAI′

J ′ = dΩI′

J ′ +AK ′

J ′ ΩI′

K ′ − ΩK ′

J ′ AI′

K ′ , (3.2)

where I is a global PSU(2, 2|4) index and I ′ is a local PSU(2, 2|4) index. And under global

PSU(2, 2|4) transformations parameterized by ΣI
J ,

δgI′

I = ΣJ
I g

I′

J , δAI′

J ′ = 0. (3.3)

In general, the indices I and I ′ could label any representation of PSU(2, 2|4), however,

throughout the rest of this paper the indices I and I ′ will always denote the “singleton”

representation corresponding to the on-shell states of a super-Maxwell multiplet. The

singleton representation is infinite-dimensional and it will be convenient to use the label

I = Z to denote the onshell scalar at zero momentum with +1 R-charge in the 56 direction

of SO(6). All other states in the singleton representation can be obtained by repeatedly

applying PSU(2, 2|4) transformations on this I = Z state.

PSU(2, 2|4) gauge-invariant operators will be constructed with the help of the

PSU(2, 2|4)-invariant tensors δIJ and ǫIJK where I, J,K indices always denote the sin-

gleton representation. If the index I denotes the super-Yang-Mills state φI , the tensors δIJ

and ǫIJK are defined to be the free propagator and the bare three-vertex of super-Yang-

Mills as

δIJ = 〈φIφJ〉, ǫIJK = 〈φIφJφK〉 (3.4)

where the color indices of φI are ignored. An explicit construction of δIJ can be found in

section (6.2) of [16] and section (3.1) of [17] where states in the singleton representation

are mapped using a non-unitary transformation into states in position space. Once the

singleton states are described in position space, one can use the standard definitions of the

propagator δIJ and three-vertex ǫIJK . It will also be useful to define the tensor δIJ to be

the inverse of δIJ which corresponds to the super-Yang-Mills kinetic operator. For example,

if the indices I and J correspond to the scalars Z[ij](x) and Z[kl](y) where i, j, k, l = 1 to 4

are SU(4) indices and xm and ym label the point in d = 4,

δIJ = ǫijkl(x− y)−2 and δIJ = ǫijkl∂m∂
mδ4(x− y). (3.5)

And if I and J correspond to the chiral gluinos ψα
i (x) and ψβ

j (y) and K corresponds

to the scalar Z[kl](z),

ǫIJK = ǫijklǫα̇β̇

∫
d4w Fαα̇(x− w) F ββ̇(y − w) G(z −w) (3.6)

– 7 –
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where Fαα̇(x−w) = σαα̇
m (x−w)m(x−w)−4 is the spinor propagator andG(z−w) = (z−w)−2

is the scalar propagator.

Note that when expressed in terms of on-shell plane-wave states, these PSU(2, 2|4)-

invariant tensors either vanish or become singular. For example, δIJ = p−2δ4(p + q) and

δIJ = p2δ4(p + q) when expressed in terms of plane-wave scalar states with momenta pm

and qm. To resolve these singularities, one needs to introduce a regulator which plays the

role of the usual (iǫ) prescription in Feynman rules. Furthermore, one needs to convert

sums over singleton indices into integrals over internal off-shell momenta. At the moment,

it is unclear how to do this in a natural way.2

Up to overall normalization factors, δIJ and ǫIJK are the only independent PSU(2, 2|4)

invariant tensors that can be constructed from the singleton representation. This follows

from the fact that the N = 4 d = 4 super-Yang-Mills action is the unique PSU(2, 2|4)-

invariant action, and the overall normalization of δIJ and ǫIJK can be absorbed by rescaling

the super-Yang-Mills fields and the super-Yang-Mills coupling constant. Note that δIJ is in-

variant under the “bonus” U(1) symmetry which enlarges PSU(2, 2|4) to U(2, 2|4), however

ǫIJK is not invariant under the “bonus” U(1) and is invariant only under PSU(2, 2|4).

At each “hole” in the worldsheet, the fluctuations of size (e rAdS)−1 will be repre-

sented by a closed string vertex operator which carries global PSU(2, 2|4) indices and cor-

responds to a gauge-invariant super-Yang-Mills operator. At zero coupling constant, the

gauge-invariant super-Yang-Mills operator can be described as a spin chain of L singleton

representations which is invariant under cyclic permutations. Note that at zero coupling

constant, PSU(2, 2|4) transformations act linearly on the super-Yang-Mills fields so that

each singleton representation describes a single super-Yang-Mills field.

The closed string vertex operator at the rth hole will have the form

Vr(zr) = f
I1...ILr
r VI1...ILr

(zr) (3.7)

where VI1...ILr
(zr) is the vertex operator for the spin chain with Lr singleton representations

and f
I1...ILr
r are the “polarizations” of the fields in the rth spin chain. Since VI1...ILr

(zr) car-

ries Lr global PSU(2, 2|4) indices and is constructed from gI′

I and AI′

J ′ , the only possibility

is that VI1...ILr
(zr) is proportional to gI′1

I1
(zr) . . . g

I′Lr

ILr
(zr).

In order to construct a physical observable which is invariant under local PSU(2, 2|4)

transformations, each of the Lr primed indices I ′1 . . . I
′
Lr must be contracted with a path-

ordered Wilson-line operator P (exp
∫
zr
A)J

′

I′ where the endpoint of the Wilson-line operator

will be determined shortly. Furthermore, the Lr Wilson lines emerging from zr will be

prohibited from crossing and will be ordered clockwise such that they preserve the order

of the indices on VI1...ILr
. This clockwise ordering implies that the vertex operator

VI1...ILr
= gI′1

I1
(zr)(Pe

R
zr

A)J
′
1

I′1
gI′2
I2

(zr)(Pe
R

zr
A)J

′
2

I′2
. . . g

I′Lr

ILr
(zr)(Pe

R
zr

A)
J ′

Lr

I′Lr
(3.8)

is invariant under cyclic permutations of the indices I1 . . . ILr . The requirement that Wilson

lines do not cross will be treated as an assumption, but the assumption might be justified

2I would like to thank Andrei Mikhailov and Warren Siegel for discussions on this point.
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by the presence of singularites of crossing Wilson lines before taking the infrared limit

e→ ∞.

Finally, to construct a gauge-invariant observable, one needs to contract the remaining

J ′ index on each of the Lr Wilson lines which emerge from the rth hole. These J ′ indices

will be contracted either by joining the endpoints of two Wilson lines and contracting their

J ′ and K ′ indices with the PSU(2, 2|4)-invariant tensor δJ ′K ′ , or by joining the endpoints

of three Wilson lines and contracting their J ′, K ′ and L′ indices using the PSU(2, 2|4)-

invariant tensor ǫJ ′K ′L′ . In the first case, the Wilson lines resemble a Feynman propagator

connecting two super-Yang-Mills fields and, in the second case, the Wilson lines resemble

a cubic vertex connecting three super-Yang-Mills fields. One can also construct gauge-

invariant observables involving “internal” Wilson lines where both endpoints of the Wilson

line are contracted with PSU(2, 2|4)-invariant tensors.3

3.2 Feynman diagrams

It will now be claimed that after taking the infrared limit e → ∞, this network of vertex

operators connected by Wilson lines reproduces the standard Feynman diagram computa-

tion in the ’t Hooft large N expansion of perturbative super-Yang-Mills. Since the Wilson

lines are prohibited from crossing on the worldsheet, the network of Wilson lines on a

worldsheet of genus g corresponds to a thickened Feynman diagram of genus g. In the ‘t

Hooft large N limit, the thickened Feynman diagram of genus g with F faces contributes

a factor proportional to

N2−2g(λ′tHooft)
F+2g−2 = (λ2

YM)2g−2(λ2
YMN)F (3.9)

where λ′tHooft = λ2
YMN . Since λstring = λ2

YM and the genus g closed string amplitude is

proportional to (λstring)
2g−2, the factor of (3.9) is reproduced if each face contributes a fac-

tor of λ′tHooft. Note that unlike the Chern-Simons/conifold duality where faces correspond

to holes on the worldsheet, faces in this network are the regions bounded by Wilson lines

and do not correspond to holes on the worldsheet.4

Extending the Maldacena conjecture to small rAdS would imply that each face should

contribute a factor of λ′tHooft = r4AdS. Although not rigorous, an argument which implies

precisely such a contribution is as follows: After using the local PSU(2, 2|4) symmetry to

gauge-fix gI′

I = δI′

I , the worldsheet action in the limit e→ ∞ is simply

S = r2AdS

∫
d2zAI′

J ′A
J ′

I′ . (3.10)

If one assumes that AI′

J ′ can be discontinuous when crossing a Wilson line, the number

of zero modes of AI′

J ′ is equal to the number of faces in the network. Furthermore, the action

of (3.10) implies that integration over each bosonic zero mode of A produces a factor of

3Andrei Mikhailov has pointed out that this network of Wilson lines resembles the network of transfer

matrices considered in [18]. It would be very interesting to explore this relation, perhaps using the transfer

matrices recently constructed in [19].
4I would like to thank Rajesh Gopakumar for stressing this point.
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(r2AdS)−1 and integration over each fermionic zero mode of A produces a factor of (r2AdS)+1.

Since the PSU(2, 2|4) Lie algebra has 30 bosonic generators and 32 fermionic generators,

the net contribution is a factor of r4AdS for each face in the network. Note that for this

argument to work, it is crucial that the gauge group is chosen to be PSU(2, 2|4) as opposed

to U(2, 2|4), and this choice is also required by the fact that ǫIJK is not invariant under

the bonus U(1) symmetry.

Up to some subtleties mentioned at the end of this section, one can also argue that

the network of Wilson lines connecting the vertex operators VI1...ILr
(zr) contributes to the

topological amplitude using the same rules as the Feynman diagram connecting the gauge-

invariant super-Yang-Mills operators described by VI1...ILr
. In the limit where e→ ∞, the

equation of motion for the gauge field is A = g−1dg. So after taking the limit e→ ∞, the

path-ordered Wilson line operator connecting g(y) and g−1(z) contributes

gI′

I (y) P (e
R z

y
A)J

′

I′ (g−1(z))JJ ′ = gI′

I (y) P (e
R z

y
g−1dg)J

′

I′ (g−1(z))JJ ′ = δJ
I . (3.11)

So the network of Wilson lines which connect the M vertex operators Vr(zr) =

f
I1...ILr
r VI1...ILr

(zr) contributes the topological amplitude

A = λ2g−2
string (r4AdS)faces

( M∏

r=1

f
I
(r)
1 ...I

(r)
Lr

r

)
T

I
(1)
1 ...I

(1)
L1

I
(2)
2 ...I

(2)
L2

... I
(M)
1 ...I

(M)
LM

(3.12)

where T
I
(1)
1 ...I

(M)
LM

is a PSU(2, 2|4) invariant tensor containing
∑M

r=1 Lr indices which is con-

structed from the PSU(2, 2|4)-invariant tensors δIJ , ǫIJK and δIJ . Since δIJ and ǫIJK

correspond to the propagator and three-vertex of super-Yang-Mills, the tensor T com-

putes the contribution of the super-Yang-Mills Feynman diagram which is described by

the Wilson-line network. As expected from a topological amplitude computation, the am-

plitude of (3.12) is independent of the locations of the vertex operators and only depends

on the topology of the Wilson-line network.

Using the above arguments, it seems reasonable to conjecture that the topological

amplitude for the network of Wilson lines correctly reproduces the perturbative computa-

tion of gauge-invariant super-Yang-Mills correlation functions. However, there are several

possible subtleties in proving this conjecture which deserve further study. Firstly, covari-

ant Feynman diagram computations require gauge-fixing and ghosts, and the tensor T

of (3.12) should somehow automatically include the ghost contributions. Secondly, loop

computations require regularization, and one expects that a similar regularization for the

tensor T is necessary when one has multiply contracted indices such as ǫIJKδ
KLǫLMNδ

NI .

Thirdly, the quartic vertex of super-Yang-Mills Feynman diagrams should somehow arise

in T from a contact term when evaluating the contribution ǫIJKδ
KLǫLMN that arises from

the contraction of two cubic vertices. Note that after introducing auxiliary fields, the

super-Yang-Mills action can be written as a cubic action. So it would not be surprising

if the quartic vertex could be interpreted as a contact term of two cubic vertices coming

from integrating out the auxiliary field.
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4. Comparison with superstring amplitudes

4.1 AdS5 × S5 measure factor

In the previous section, it was argued that perturbative super-Yang-Mills correlation func-

tions can be computed as topological amplitudes using the small radius limit of the topolog-

ical AdS5 × S5 sigma model. These topological amplitude computations naively look very

different from closed superstring amplitude computations using the pure spinor formalism.

For example, in a flat background, unintegrated closed superstring vertex operators for

supergravity states have the form V = λαλ̂bαAαbα(x, θ, θ̂) where λα and λ̂bα are the left and

right-moving pure spinor ghosts. And three-point amplitudes in a flat background are

computed by A = 〈V1V2V3〉 using the zero mode measure factor

〈(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)(λ̂γ
q θ̂)(λ̂γrθ̂)(λ̂γsθ̂)(θ̂γqrsθ̂)〉 = 1. (4.1)

Since supergravity states in an AdS5 × S5 background correspond to half-BPS super-

Yang-Mills gauge-invariant operators, one expects that the three-point amplitude for these

states should be independent of rAdS. So it should be possible to relate the topological

amplitude of this three-point half-BPS correlation function at small radius with the su-

perstring amplitude computation at large radius. In this section, it will be shown how to

relate these two computations.

The first step in relating the two computations is to determine the zero mode measure

factor using the pure spinor formalism for the superstring in an AdS5 × S5 background.

This measure factor should be in the BRST cohomology at ghost-number (3, 3) where the

left and right-moving BRST operators are [4]

Q =

∫
dz η

αbβλ
α(g−1∂g)

bβ , Q =

∫
dz η

αbβλ̂
bβ(g−1∂g)α, (4.2)

η
αbβ = γ01234

αbβ , and g takes values in the PSU(2,2|4)
SO(4,1)×SO(5) coset. Under the BRST transforma-

tions generated by (4.2),

δg = g(λαTα + λ̂bαTbα), δλα = 0, δλ̂bα = 0, (4.3)

where Tα and Tbα are the 32 fermionic generators of PSU(2, 2|4).

One clue in constructing the zero mode measure factor in an AdS5 ×S5 background is

to note that for the Type IIA superstring in a flat background, the measure factor of (4.1)

can be written as

〈 [(λγmθ)(λ̂γmθ̂)]
5(λαλ̂α)−2 〉 = 1 (4.4)

using the identities

(λγm1θ)(λγm2θ)(λγm3θ)(λγm4θ)(λγm5θ) = (λγm1...m5λ)(λγnθ)(λγpθ)(λγqθ)(θγnpqθ)

(4.5)

and (λγm1...m5λ)(λ̂γm1...m5 λ̂) = (λαλ̂α)2 where overall proportionality factors are being

ignored.
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The operator Vflat = (λγmθ)(λ̂γmθ̂) appearing in (4.4) is the vertex operator of the

graviton trace at zero momentum, and is related to the worldsheet Lagrangian Lflat in a

flat background by

QQLflat = ∂∂Vflat. (4.6)

Using the worldsheet Lagrangian LAdS for the pure spinor formalism in an AdS5 ×

S5 background, one can similarly compute the vertex operator VAdS for the AdS radius

modulus at zero momentum and one finds that

QQLAdS = ∂∂VAdS (4.7)

where VAdS = η
αbβλ

αλ̂
bβ.

By analogy with the zero mode measure factor of (4.4), the natural guess for the zero

mode measure factor in an AdS5 × S5 background is therefore

〈 (η
αbβλ

αλ̂
bβ)5(η

γbδλ
γ λ̂

bδ)−2 〉 = 〈 (η
αbβλ

αλ̂
bβ)3 〉 = 1. (4.8)

So unlike in a flat background, the AdS5 × S5 measure factor only involves the pure

spinor ghosts and does not involve the matter fields. To verify that (4.8) is the correct

measure factor, one can easily compute the tree amplitude of three radius moduli described

by the vertex operator VAdS = η
αbβλ

αλ̂
bβ and one finds that

A = 〈VAdSVAdSVAdS〉 = 1. (4.9)

Note that in a flat background, the analogous amplitude involving the zero momentum

graviton trace vanishes since (Vflat)
3 contains 3 θ’s and 3 θ̂’s whereas the measure factor

of (4.1) requires 5 θ’s and 5 θ̂’s. This result is consistent with the fact that the d = 10

effective action vanishes in a flat background. But in an AdS5×S
5 background, the effective

action is a non-vanishing function of the AdS radius.

4.2 AdS5 × S5 vertex operators

The next step in relating the computations of three-point half-BPS amplitudes is to con-

truct the vertex operator for a general supergravity state in the pure spinor formalism.

As explained in [3], one method for constructing the supergravity vertex operators uses a

bispinor superfield A
αbβ(x, θ, θ̂) satisfying the on-shell conditions

γαγ
mnpqr∇γAαbβ = γ

bβbγ
mnpqr∇bγAαbβ = 0 (4.10)

where ∇α and ∇bα are the covariant fermionic derivatives in an AdS5 × S5 background.

As in a flat background, the unintegrated supergravity vertex operator in an AdS5 × S5

background can be expressed in terms of A
αbβ as V = λαλ̂

bβA
αbβ(x, θ, θ̂) and the on-shell

conditions of (4.10) imply that QV = QV = 0.

From the analysis in the previous subsection, it is clear that the θ = θ̂ = 0 component

of ηαbβA
αbβ is the radius modulus, and other fields in the supergravity multiplet can be
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obtained from this modulus by supersymmetry transformations. For example, the vertex

operator for the scalar with J units of R-charge in the 56 direction is

VJ = (η
αbβλ

αλ
bβ)a±JeiJy56 + . . . (4.11)

where a is the x5 direction in AdS5, y56 is the 56 direction in S5, the choice of ± sign

determines the AdS5 boundary condition of the state, and . . . contains terms higher order

in (θ, θ̂) which are determined by BRST invariance.

If the plus sign is chosen in (4.11) so that VJ diverges as a→ ∞, the supergravity vertex

operator corresponds to the PSU(2, 2|4) representation with |J | lowered indices. Using the

notation where I = Z corresponds to the zero-momentum scalar with +1 R-charge in the 56

direction and I = Z corresponds to the zero-momentum scalar with −1 R-charge in the 56

direction, VJ = VZ...Z when J is positive and VJ = VZ...Z when J is negative. On the other

hand, if the minus sign is chosen in (4.11) so that VJ goes to zero as a→ ∞, the supergravity

state corresponds to the PSU(2, 2|4) representation with |J | raised indices. Defining δIJ to

be the same PSU(2, 2|4)-invariant tensor defined earlier, VJ = V Z...Z = δZI1 . . . δZIJVI1...IJ

when J is positive and VJ = V Z...Z = δZI1 . . . δZI|J|VI1...I|J|
when J is negative.

4.3 Three-point supergravity amplitude

Using the superstring vertex operators VJ of (4.11), it is easy to compare the three-point

superstring tree amplitudes of these states with the topological amplitude computations.

For the amplitude

A = 〈VJ1(z1)VJ2(z2)VJ3(z3)〉, (4.12)

the measure factor of (4.8) implies that A = 1 if and only if J1 +J2+J3 = 0 and if the state

with maximum |J | charge has the opposite AdS5 boundary condition from the other two

states. These conditions guarantee that there are either an equal number of Z subscript

and Z superscript indices on the vertex operators, or an equal number of Z subscript and

Z superscript indices.

For example, suppose that J1 is positive and J2 and J3 are negative such that J1 +J2+

J3 = 0. If VJ1 diverges when a → ∞, the amplitude 〈VJ1(z1)VJ2(z2)VJ3(z3)〉 = 1 implies

that

〈 VZ...Z(z1) δZI1 . . . δZI|J2|VI1...I|J2|
δZK1 . . . δZK|J3|VK1...K|J3|

〉 = 1. (4.13)

To show that this result agrees with the topological amplitude computation, note that

for three-point amplitudes involving half-BPS states, only the propagator contributes to the

Feynman diagram computation since the amplitude is independent of the super-Yang-Mills

coupling constant. Since there are no contributions from cubic vertices, the topological

amplitude computation involves a single Wilson-line network with J1 propagators which

contributes

〈 VZ...Z(z1) VI1...I|J2|
(z2) VK1...K|J3|

(z3) 〉 = δZI1 . . . δZI|J2|
δZK1 . . . δZK|J3|

. (4.14)

So using δZIδ
IZ = 1, one finds that (4.14) agrees with (4.13).
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In comparing these topological amplitudes and pure spinor superstring amplitudes, it

was important that the λα and λ̂bα pure spinor ghosts decoupled in a trivial manner in

the superstring computation. For amplitudes involving non-BPS states or more than three

half-BPS states, the pure spinor ghosts probably play a more complicated role and it will

be highly non-trivial to compare the two amplitude computations. This is not surprising

since these amplitudes are expected to have non-trivial dependence on the AdS radius.

One situation which would be very interesting to study is the plane-wave limit in which

the external vertex operators carry large R-charge. In this case, it might be possible to

compare the topological and superstring computations for a more general class of scattering

amplitudes. Perhaps in the limit of large R-charge, the discrete set of contributions to the

topological amplitude combines into a continuous integral over worldsheet moduli in the

superstring amplitude computation. Another speculation is that in the plane-wave limit, 8

bosonic and 8 fermionic components of the PSU(2, 2|4) gauge field might become dynamical

and reproduce the light-cone degrees of freedom of the superstring.
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